Single‐molecule mechanochemical characterization of E. coli pol III core catalytic activity
نویسندگان
چکیده
Pol III core is the three-subunit subassembly of the E. coli replicative DNA polymerase III holoenzyme. It contains the catalytic polymerase subunit α, the 3' → 5' proofreading exonuclease ε, and a subunit of unknown function, θ. We employ optical tweezers to characterize pol III core activity on a single DNA substrate. We observe polymerization at applied template forces F < 25 pN and exonucleolysis at F > 30 pN. Both polymerization and exonucleolysis occur as a series of short bursts separated by pauses. For polymerization, the initiation rate after pausing is independent of force. In contrast, the exonucleolysis initiation rate depends strongly on force. The measured force and concentration dependence of exonucleolysis initiation fits well to a two-step reaction scheme in which pol III core binds bimolecularly to the primer-template junction, then converts at rate k2 into an exo-competent conformation. Fits to the force dependence of kinit show that exo initiation requires fluctuational opening of two base pairs, in agreement with temperature- and mismatch-dependent bulk biochemical assays. Taken together, our results support a model in which the pol and exo activities of pol III core are effectively independent, and in which recognition of the 3' end of the primer by either α or ε is governed by the primer stability. Thus, binding to an unstable primer is the primary mechanism for mismatch recognition during proofreading, rather than an alternative model of duplex defect recognition.
منابع مشابه
Exchange between Escherichia coli polymerases II and III on a processivity clamp
Escherichia coli has three DNA polymerases implicated in the bypass of DNA damage, a process called translesion synthesis (TLS) that alleviates replication stalling. Although these polymerases are specialized for different DNA lesions, it is unclear if they interact differently with the replication machinery. Of the three, DNA polymerase (Pol) II remains the most enigmatic. Here we report a sta...
متن کاملSingle-molecule visualization of fast polymerase turnover in the bacterial replisome
The Escherichia coli DNA replication machinery has been used as a road map to uncover design rules that enable DNA duplication with high efficiency and fidelity. Although the enzymatic activities of the replicative DNA Pol III are well understood, its dynamics within the replisome are not. Here, we test the accepted view that the Pol III holoenzyme remains stably associated within the replisome...
متن کاملSpotlighting motors and controls of single FoF1-ATP synthase.
Subunit rotation is the mechanochemical intermediate for the catalytic activity of the membrane enzyme FoF1-ATP synthase. smFRET (single-molecule FRET) studies have provided insights into the step sizes of the F1 and Fo motors, internal transient elastic energy storage and controls of the motors. To develop and interpret smFRET experiments, atomic structural information is required. The recent ...
متن کاملDysfunctional proofreading in the Escherichia coli DNA polymerase III core.
The epsilon-subunit contains the catalytic site for the 3'-->5' proofreading exonuclease that functions in the DNA pol III (DNA polymerase III) core to edit nucleotides misinserted by the alpha-subunit DNA pol. A novel mutagenesis strategy was used to identify 23 dnaQ alleles that exhibit a mutator phenotype in vivo. Fourteen of the epsilon mutants were purified, and these proteins exhibited 3'...
متن کاملA new form of DNA polymerase 3 and a copolymerase replicate a long, single-stranded primer-template.
A new form of DNA polymerase III, termed Pol III star (Pol III(*)), has been purified to homogeneity from Escherichia coli. Pol III(*) is temperature sensitive when isolated from a thermo-sensitive dnaE mutant, as had been described for Pol III. Pol III(*) and Pol III are separable by gel filtration. Pol III(*) utilizes a duplex template containing short gaps with the same catalytic properties ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 26 شماره
صفحات -
تاریخ انتشار 2017